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Synthesis of poly-substituted pyrroles starting from
the Baylis–Hillman adducts
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Abstract—We synthesized poly-substituted pyrrole derivatives 4a–e, 7a–c and 10a–d from the reaction of phenacyl bromide and the
aza-Baylis–Hillman adducts 1a–d or their rearranged derivatives 5a–e. The pyrroles were synthesized via the successive N-alkyl-
ation, Michael addition, elimination of p-toluenesulfinic acid and oxidative aromatization processes.
� 2007 Elsevier Ltd. All rights reserved.
A variety of aromatic and heterocyclic compounds have
been synthesized by using suitable chemical transforma-
tions starting from the Baylis–Hillman adducts.1 Pyr-
roles are the basic skeleton of many biologically
important substances and numerous synthetic methods
of pyrroles have been investigated extensively.2,3 How-
ever, the synthesis of pyrrole derivatives from Baylis–
Hillman adducts was not developed much.3 During the
chemical transformations of Baylis–Hillman adducts4
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we were interested in the synthesis of poly-substituted
pyrrole derivatives.

Our initial synthetic pathway is depicted in Scheme 1. We
thought that trisubstituted tetrahydropyrrole derivatives
3 could be synthesized from aza-Baylis–Hillman adducts
15 by sequential N-alkylation with phenacyl bromide
(2a) and Michael addition at the conjugated vinyl moi-
ety of the corresponding intermediate.6 Elimination of
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Table 1. Synthesis of 2,3,5-trisubstituted pyrroles

Entry 1 + 2 3 (%) 4 (%)

1 1a + 2a 3a (70) 4a (54)
2 1a + 2b 3b (86) 4b (48)
3 1b + 2a 3c (68) 4c (52)
4 1c + 2a 3d (63) 4d (61)
5 1d + 2a 3e (74) 4e (42)

Table 2. Synthesis of 2,3,4-trisubstituted pyrroles

Entry 5 + 2 6 (%) 7 (%)

1 5a + 2a 6a (60) 7a (81)
2 5a + 2b 6b (56) 7b (77)
3 5b + 2a 6c (58) 7c (73)
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p-toluenesulfinic acid from 3 and the following oxidation
would give 2,3,5-trisubstituted pyrroles 4 (Scheme 1).

The reaction of 1a–d and phenacyl bromide (2a) or 2-
bromo-2 0-acetonaphthone (2b) under the influence of
K2CO3 in DMF gave the corresponding diastereomeric
mixtures of tetrahydropyrroles 3a–e in moderate yields
(63–86%) via the intermediate (I). Actually we observed
the formation of several isomers of 3 having similar Rf

values on TLC. We separated them together by using
a short path silica column and used them together in
the next elimination reaction. The elimination of p-tolu-
enesulfinic acid was examined with DBU in CH3CN.
However, to our surprise, we obtained 2,3,5-trisubsti-
tuted pyrroles 4 directly under the conditions in moder-
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ate yields (42–61%) and the results are summarized in
Table 1.7 Although the mechanism for the dehydrogena-
tive oxidation process is unclear at this stage8 we could
prepare our desired pyrroles very easily in two steps.

Encouraged by the results we examined the reaction of
rearranged tosylamide derivatives 5a and 5b, which
could be easily synthesized from the corresponding Bay-
lis–Hillman acetates and tosylamide in an SN2 0 manner.5

The reactions of 5a and 5b showed the same reactivity as
those of 1a–d and we synthesized 2,3,4-trisubstituted
pyrroles 7a–c in good yields (73–81%) under the same
conditions. The results are summarized in Scheme 2
and in Table 2.

However, the reactions of 5c–e were somewhat different
from those of the cases of Schemes 1 and 2. The reac-
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Table 3. Synthesis of 2,3,4-trisubstituted pyrroles

Entry 5 + 2 Time (h) 8 (%, syn/anti)a 10 (%)

1 5c + 2a 8 8a (86, 66/20) 10a (71)
2 5c + 2b 8 8b (73, 56/17) 10b (51)
3 5d + 2a 10 8c (79, 59/20) 10c (67)
4 5e + 2a 20 8d (50, 39/11)b 10d (67)

a Isolated yields of syn and anti isomers.
b The yield of 8d was relatively low due to low reactivity of 5e.
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tions of 5c–e and 2 under the same conditions (K2CO3/
DMF) produced 8a–d as the major products as separa-
ble syn/anti mixtures.9 The formation of 8 can be
explained by an intramolecular aldol reaction of
intermediate (III). However, when we subjected 8 under
the conditions of DBU in CH3CN we could obtain
2,3,4-trisubstituted pyrroles 10a–d in moderate yields
(51–71%), fortunately. Compounds 8a–d could be con-
verted to intermediate (III) by the retro-aldol pathway
and intermediate (III) was slowly transformed to 9a–d
via the Michael addition pathway. The last step for
the formation of 10 from 9 could be explained as in
Schemes 1 and 2. The results are summarized in Scheme
3 and in Table 3.

In summary, we developed an expeditious synthetic
method of poly-substituted pyrrole derivatives from
the reaction of phenacyl bromide and the aza-Baylis–
Hillman adducts or their rearranged derivatives via
successive N-alkylation, Michael addition, elimination
of p-toluenesulfinic acid and oxidative aromatization
processes. The studies on DBU-mediated interesting
oxidation process are underway.
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